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Abstract— In this paper, deterministic and stochastic nonlin-
ear prognosis methods that take uncertainty propagation into
account are evaluated. More specifically, a deterministic method
using interval techniques and two stochastic methods based on
Bayesian filtering, namely extended Kalman filter and particle
filter, are considered. The three algorithms are compared with
reference to a classical benchmark which is a crack growth
analysis, however they can be extended to other applications
as well. The advantages and drawbacks of each approach are
studied through different prognosis metrics such as accuracy,
precision and timeliness. Based on these numerical simulations,
the results show that deterministic methods for prognosis are
suitable to manage bounded uncertainty.

I. INTRODUCTION

Critical systems such as an aircraft or a spacecraft are made

of complex components whose malfunction and failure could

have unacceptable impacts on the users safety, the mission

success and the costs related to maintenance operations. In

order to avoid catastrophic scenarios, diagnosis and prog-

nosis modules are incorporated to these systems. Diagnosis

is defined as the detection, isolation and identification of a

failure that has occurred in the system, whereas prognosis

aims at estimating the remaining useful life (RUL) of a

system once the diagnosis step has been done.

There are various prognosis approaches, but the most com-

mon classification divides them into three main categories

[1]. The first one gathers the knowledge-based approaches

[2], where the degradation rules have been developed and

refined by experts based on historical and empirical failure

data. The second one includes data-driven approaches [3],

which extract features from operating data such as current,

temperature, or vibration signals. They mainly use statistical

and machine learning techniques to track, approximate and

forecast the evolution of the degradation state. The third

category focuses on the model-based prognosis approaches

[4] through the use of a dynamic mathematical model of the

process being monitored. Each of these approaches has its

advantages and drawbacks, and the choice of the method to

use depends on the application domain and the information

available about the system. The knowledge-based approaches

are easy to implement, but frequent updates are needed

as new forms of faults that are not yet listed can occur.

Data-driven approaches have the ability to transform high-

dimensional noisy data into lower-dimensional information
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for prognosis decisions. However, they are highly-dependent

on the quantity and quality of operational data and therefore

require a significant storage space. Model-based prognosis

approaches need an accurate degradation model, which can

be difficult to obtain in most cases. However they have the

potential to outperform the two other approaches. Indeed, the

ability to incorporate physical knowledge of the system is the

main advantage of the model-based approaches. Moreover,

model adaptation to a system degradation is another advan-

tage because it helps to keep the prognosis accuracy at a

required level if the of the system degradation is improved.

Therefore in this paper, the focus is entirely placed on model-

based prognosis techniques.

In the literature, various model-based prognosis approaches

have been developed [5], but the uncertainty management

problem has only recently been addressed ([6], [7]), whereas

it is a key aspect of prognosis [8]. Indeed, since the prediction

of the RUL of a degrading system is accomplished in the

absence of future measurements, it is unavoidably affected by

coarse uncertainty. The objective of uncertainty management

is to determine the sources of uncertainty and propagate them

to get the probability density function (pdf) of the predicted

RUL. There are mainly three major sources of uncertainty:

modeling uncertainty, sensor measurement uncertainty and

operational uncertainties.

In this context, the aim of the paper is to present and compare

the ability of three model-based prognosis methods to deal

with uncertainties in a nonlinear framework. Usually, in order

to take uncertainties into account, the evolution of the degra-

dation state is treated as a stochastic process so that the RUL

pdf can be estimated. In the case of deterministic methods

with bounded uncertainties, no distribution is assumed and

the exact value of the predicted RUL is assumed to belong to

an interval defined by lower and upper bounds. As stochastic

approaches, extended Kalman filter (EKF) and particle filter

(PF) are investigated. In addition, interval techniques are

investigated as an alternative deterministic approach.

The paper is organized as follows. Section II presents the

model-based prognosis process. In Section III, two stochastic

and a deterministic methods are explained. Section IV de-

scribes the simulation results obtained with a crack growth

benchmark model. Finally, Section V concludes the paper

and presents some directions for future works.

II. PROBLEM STATEMENT

A Prognosis and Health Management (PHM) system pro-

vides the ability of fault diagnosis and estimation of RUL.

This paper contributes to the work of the PHM community
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by comparing stochastic and deterministic model-based prog-

nosis methodologies using performance metrics. This section

presents the steps to calculate the RUL of a system and to

evaluate the performance of the prognosis technique used.

A. Degradation model construction

The central idea of model-based prognosis is to use a

dynamic mathematical model that describes the evolution of

a degradation within a system or a component. The one that

is used as an illustration in this paper is a crack growth

model.

When a crack forms in a component, its size and its prop-

agation speed must be monitored in order to calculate the

RUL of this component. The knowledge of the crack growth

governing equation is needed. A widely used one in the case

of a fatigue crack growth under cyclic load is the Paris-

Erdogan law [9]:

da

dN
=C(∆K)m , ∆K = ∆σ

√
πa (1)

where a is the crack size, N is the number of cycles, ∆K

is the range of stress intensity factor and ∆σ is the stress

range. C and m are the unknown model parameters to be

estimated. Once a degradation model is available, the goal is

now to estimate the state of the degradation and to compute

the RUL.

B. Degradation state estimation and RUL calculation

State estimation relates the mathematical model of the degra-

dation with the data from the different sensors to determine

the underlying behavior of the system at any time instant.

As the degradation model is often nonlinear, suitable state

estimation techniques should be used. Furthermore, degra-

dation models involve uncertain parameters and estimation

methods have to be robust when the degradation state should

be estimated.

Usually, prognosis approaches are based on two parts in the

degradation state estimation: (i) the current degradation state

estimation and (ii) the future degradation state estimation.

During the current state estimation, sensor data are available

for a specific observation interval whose size depends on the

prediction time tp. Then, from this instant, the forecasting

of the degradation state in the future is realized. The par-

ticularity of this step is that state estimation is performed

without new measurements. The future state is predicted by

taking uncertainties into account until the failure threshold

is reached, giving the predicted failure time tp f . Finally, the

RUL can be calculated as RUL(tp) = tp f − tp. Fig. 1 provides

a scheme of the process.

As new measurements are collected, predictions are im-

proved via model parameters and degradation state estimates

updating. Thus, the uncertainties are reduced over time.

C. Performance evaluation

There is no strict agreement about which appropriate and

acceptable set of metrics should be used in prognosis ap-

plications. However, it is widely admitted that accuracy and

precision indicators are relevant to examine the performance

Fig. 1. Prognosis process scheme

of prognosis algorithms [10]. These metrics derive from the

prediction error performed at time tp which is expressed as

e(tp) = RUL(t f )−RUL(tp f ) where RUL(t f ) is the ground-

truth RUL at the actual time of failure t f .

• Accuracy is a measure of the degree of closeness of

predicted failure time tp f to the actual failure time

t f . This metric provides an exponential weight of the

errors in RUL predictions over several experiments.

The accuracy of a prognosis algorithm at a specific

prediction time tp is defined as [11]:

A(tp) =
1

Ns

Ns

∑
n=1

exp

(

− |en(tp)|
RUL(t f )

)

(2)

where Ns is the number of experiments and en(tp) is

the prediction error of the nth experiment. The range of

the accuracy is between 0 and 1, where 1 gives the best

accuracy.

• Precision is a measure of the narrowness of the interval

in which the RUL predictions fall and is expressed as

[12]:

P(tp) = exp

(

− R

R0

)

(3)

where R is the width of the confidence interval of the

prediction given by R = 2× 3σRUL where σRUL is the

standard deviation of the RUL pdf. R0 is a normalizing

factor. The precision value varies between 0 and 1,

where 1 reflects the highest precision.

• Timeliness indicates the relative position of the predicted

RUL pdf along the time axis with respect to the occur-

rence of the actual failure event. There are three cases

(Fig. 2): (a) the failure occurs after the predicted failure

time tp f , (b) the failure occurs at the same time as

the predicted failure time, and finally, (c) the failure

occurs earlier than predicted. This last case must be

absolutely avoided. To compute the timeliness metric,

the following function is used [13]:
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T =
1

N

Ns

∑
n=1

Tn (4)

Tn =

{

exp(− en(tp)
Rmin

)− 1 , if en(tp)≤ 0

exp(
en(tp)
Rmax

)− 1 , if en(tp)> 0
(5)

[Rmin,Rmax] represents the interval around the ground-

truth RUL (Fig. 2). The values of this timeliness func-

tion are in the interval [0;+∞] and the perfect score for

timeliness is 0.

Fig. 2. Timeliness metric

III. DEGRADATION STATE ESTIMATION

In order to solve the dynamic degradation state estimation

problem, two mathematical equations are needed: a first

one describing the evolution of the degradation state and

a second one relating the state and the noisy measurements.

The association of these two equations gives the following

discrete state-space system:

xk = f (xk−1,θk−1,wk) (6)

yk = h(xk,vk) (7)

where x ∈ R
n denotes the state, θ represents the unknown

model parameter vector, y ∈R
p is the measured outputs and

k ∈N is a discrete time step. The functions f and h describe

respectively the nonlinear evolution of the state and the mea-

surements over time. The variables w and v are respectively

the process and measurement noises which represent the

model and measurements uncertainties. In the context of

prognosis, the state to be estimated is the degradation. To

this purpose, two stochastic methods, an EKF and a PF are

presented in this section, then a deterministic approach using

interval techniques is introduced. Determinism implies that

noises and disturbances are bounded, whereas in the case of

stochastic state estimation, they are modeled in probabilistic

terms.

A. Stochastic methods

The objective of stochastic filtering is to estimate the pdf

p(xk|y0:k) which gives statistical information about the degra-

dation state xk, based on the set of all measurements y0:k =
Yk = {y0, · · · ,yk}. The state equation (6) characterizes the

state transition pdf p(xk+1|xk), whereas the measurement

equation (7) describes the pdf p(yk|xk) which is further

related to the measurement noise model. Concerning the

parameter vector θ , it is jointly estimated with the state x. In

order to handle this estimation problem, the parameters are

assumed to be constant over time, i.e. θk = θk−1. This method

often provides adequate results when only a few parameters

are to be estimated [14].

Given p(x0), p(xk+1|xk) and p(yk|xk), the recursive Bayesian

estimation presented below is used to solve the stochastic

filtering problem.

Recursive Bayesian estimation principle

In Bayesian theory, the uncertainties are treated as random

variables. Moreover, a recursive filtering approach means that

received data can be processed sequentially rather than as a

batch so that it is not necessary to store the complete data set

nor to reprocess existing data if a new measurement becomes

available.

First of all, it is assumed that: (i) the state vector is a first-

order Markov process such that p(xk|x0:k−1) = p(xk|xk−1)
and (ii) the observations are independent of the states.

Combining these two assumptions and the Bayes rules, the

following equation is obtained [15]:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(8)

The posterior density p(xk|Yk) is defined through the

combination of three terms:

• The prior density p(xk|Yk−1) which is the prediction

density of the state at time k obtained via the Chapman-

Kolmogorov equation:

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (9)

where p(xk|xk−1) is the state transition density defined

by the state equation (6);

• The Likelihood density p(yk|xk) which is defined by

equation (7);

• A normalizing constant p(yk|Yk−1) which depends on

the likelihood and the prior such that:

p(yk|Yk−1) =

∫

p(yk|xk)p(xk|Yk−1)dxk . (10)

Bayesian filtering handles the computation or approximation

of these three terms to deduce the pdf of the degradation

state p(xk|Yk). It is based on two steps: prediction and

update. First, the required pdf p(xk−1|Yk−1) is supposed to

be available. During the prediction step, using the previous

pdf and the system model (6), the prior p(xk|Yk−1) is

approximated with equation (9). Then comes the update step

at time k when a measurement yk becomes available, the

likelihood pdf p(yk|xk) is obtained with the measurement

equation (7). Then, the posterior density p(xk|Yk) is

deduced from equation (8). Based on this Bayesian filtering

algorithm, many types of filters have been developed [15].

In this paper, an EKF and a PF are used, since they can

handle nonlinear dynamical systems.

Extended Kalman filter
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The EKF is an extended version of the original Kalman

filter (KF) [16] developed for nonlinear systems. In this

filtering approach, the state pdf p(xk|Yk) is approximated

by a Gaussian distribution. To achieve this, the nonlinear

degradation model is linearized around the last predicted

degradation state estimate and the conventional KF algorithm

is applied to the linearized dynamics. To linearize the nonlin-

ear functions f and h which are assumed to be differentiable,

their respective Jacobian matrices F and H are computed at

each time step with the predicted degradation state:

Fk =
∂ f

∂x

∣

∣

∣

∣

x̂k−1

(11)

Hk =
∂h

∂x

∣

∣

∣

∣

x̂k

Current degradation state estimation with the EKF:

To solve the prognosis problem, the first step consists in the

estimation of the current degradation state, while measure-

ments are available. Hence, the classical EKF algorithm [17]

expressed as follows is used:

Prediction step

x̂k|k−1 = f (x̂k−1|k−1,wk = 0) (12)

Pk|k−1 = FkPk−1|k−1FT
k +Qk

Update step

ŷk = yk −Hkx̂k|k−1 (13)

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)

Pk|k = (I−KkHk)Pk|k−1

x̂k|k = x̂k|k−1 +Kkŷk

where P, Q and R are covariance matrices, respectively of

the estimation error, the process noise and the measurements

noise. K is the Kalman gain.

Future degradation state estimation with the EKF:

In this part, the previous estimation x̂kp−1|kp−1
is used as the

initial degradation state while the prediction step remains the

same. The update step is changed because the innovation

term ŷk = yk −Hk x̂k|k−1 is no more available. Instead, the

degradation state at step k ∈ {kp, · · · ,kp f} is updated with the

state transition model (6) using the standard deviation of the

previous degradation state to approximate the distribution of

the noise w. The algorithm for the estimation of the future

degradation step from step kp to step kp f is given by the

following equations:

Prediction step

x̂k|k−1 = f (x̂k−1|k−1,wk = 0) (14)

Pk|k−1 = FkPk−1|k−1FT
k +Q

Update step

Pk|k = Pk|k−1 (15)

ŵk ∼ N(0,Pk|k)

x̂k|k = f (x̂k|k−1, ŵk)

The EKF generally provides satisfying results and is easy

to implement. But as the desired state pdf is approximated

by a Gaussian distribution, it may have significant deviation

from the true distribution causing divergence in the case

where the degradation model is highly nonlinear. In order to

deal with more complex degradation models, particle filters

can be used.

Particle filter

In the PF approach, the state pdf at time instant k is

approximated by a set of Np particles {xi
k}

Np

i=1 representing

points in the unknown state space, and a set of associated

weights {ω i
k}

Np

i=1 denoting discrete probability masses:

p(xk|Yk)≈
Np

∑
i=1

ω i
kδ (xk − xi

k) with

Np

∑
i=1

ω i
k = 1 (16)

Ideally to represent samples, the particles should be drawn

from the pdf p(xk|Yk). However, as it is often impossible,

an alternative easy-to-sample proposal distribution q(xk|Yk)
is used instead. Usually, the importance density function

is set equal to the a priori state pdf, which means

qk(xk|xk−1) = p(xk|xk−1).

Current degradation state estimation with the PF:

There exist several PF algorithms (see [18]). One of the most

used is the sequential importance resampling (SIR) particle

filter. It is based on three main steps which are prediction,

update and re-sampling:

Initialization

• Draw particles xi
0 ∼ p(x0)

• Compute the initial weights ω i
k =

1
Np

Prediction step

• Simulate the state model (6) to generate a new set of Np

particles x
i=1:Np

k which are realizations of the predicted

pdf p(xk|Yk−1).

Update step

• Each sampled particle is assigned a weight based on the

likelihood p(yk|xk):

ω i
k = ω i

k−1 p(yk|xi
k−1) = ω i

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

p(xi
k|xi

k−1,yk)
(17)

• Normalize the weights:

ω i
k = ω i

k(
Np

∑
i=1

ω i
k)

−1 (18)

Re-sampling

• Degeneracy problem: the weight variance increases

and after a few iterations all but one particle have

a negligible weight [19]. Particles with small weights

are eliminated so that the computational efforts are

concentrated in those having large ones.

• Re-sampling condition: if the effective sample size Ne f f

is under some threshold Nth, a re-sampling procedure is
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done. An estimate of Ne f f is

Ñe f f = (
Np

∑
i=1

(ω i
k)

2)−1 (19)

• Using the inverse cumulative distribution function

(CDF) method [18] and the current set {xk}Np

i=1, a new

set {x̃k}Np

i=1 is drawn to replace the current one. Finally,

with ω̃ i
k = N−1

p , the state is given by:

x̂i
k =

Np

∑
i=1

ω̃ i
kx̃k

i (20)

The prediction and update steps form a single iteration

and are recursively applied at each time k, whereas the

re-sampling step execution depends on the value of Ne f f .

Future degradation state estimation with the PF:

To apply the PF algorithm and to obtain the degradation state

pdf, the weight of each particle should be updated at every

step. However, these weights depend on the acquisition of

new measurements. To overcome this difficulty, the state is

propagated only using the state model (6) while the current

particle weights are propagated in time without any changes.

In other words, only the prediction step is repeated until the

threshold is reached.

B. Set-membership framework

In this subsection, a set-membership methodology is pro-

posed based on a guaranteed estimation and prediction of

models described by (6), (7) where only the bounds of the

noises and disturbances are available without any additional

stochastic assumption. Disturbances w and noises v satisfy

|vk| ≤V , |wk| ≤W for some positive bounds V and W . Since

w and v belong to intervals, the parameter vector θ and

the degradation state x can not take single values but they

also belong to some compact domains. The proposed set-

membership methodology is based on two steps:

• The available measurements over the time interval [t0, tp]
are used to estimate the feasible domain of the param-

eter vector θ given by

Θ =







θ ∈R
q | xk = f (xk−1,θ ,wk),

h(xk,vk) ∈ [ym
k −V,ym

k +V ],
∀k ∈ [0, tp],∀xk−1 ∈ [xk−1],∀|wk| ≤W







(21)

where ym
k are the measurements and [ym

k −V,ym
k +V ] is

the domain of the output taking into account the noises.

• The estimated feasible parameter domain is used to

predict the degradation behavior for tk > tp in order to

estimate the remaining useful life of the system.

The degradation models used in this paper are nonlinear and

the estimation and prediction steps are based on interval

tools to take into account the bounded uncertainties.

Interval techniques

Interval analysis techniques represent a powerful tool to

tackle uncertainty propagation without any stochastic as-

sumption. Indeed, the evaluation of the whole set of possible

model outputs could be performed using only one interval

evaluation. A real interval [a] = [a,a] is a connected and

closed subset of R. The set of all real intervals of R is

denoted by IR. Real arithmetic operations are extended to

intervals (see [20]). Consider an operation ◦ ∈ {+;−;∗;/}
and [a], [b] two intervals, then:

[a]◦ [b] = {x◦ y | x ∈ [a],y ∈ [b]}

The width of an interval [a] is defined by w[a] = a− a and

its midpoint by mid[a] = (a+a)/2. The midpoint represents

a point estimation of a variable and the radius is the uncer-

tainty.

Let f : Rn →R
m; the range of the function f over an interval

vector (called also a box) [x] is given by:

f ([x]) = { f (x) | x ∈ [x]} (22)

An interval function [ f ] : IRn → IR
m is an inclusion function

for f if:

∀[x] ∈ IR
n, f ([x]) ⊆ [ f ]([x]) (23)

An inclusion function of f could be obtained by replacing

each occurrence of a real variable by its corresponding

interval and by replacing each standard function by its

interval evaluation. Such a function is called the natural

inclusion function.

A constraint satisfaction problem (CSP) is defined by a set

of n variables x = x1,x2, . . . ,xn and a set of m constraints

C1,C2, . . . ,Cm. Each variable xi has an initial nonempty

domain Di of possible values. Each constraint Ci involves

a subset of the variables and specifies the possible combi-

nations of values for such subset. A state of the problem

is defined by an assignment of values to some or all of

the variables, xi = vi, . . . ,x
j = v j. An assignment that does

not violate any constraint is called a consistent assignment.

A complete assignment is one in which every variable is

mentioned, and a solution to a CSP is a complete assignment

that satisfies all the constraints. In contrast to conventional

techniques, interval methods do not suffer from local con-

vergence and the computed set is guaranteed to contain the

global solutions. In addition, an empty set is returned if

the CSP has no solution in the initial searching domain.

The goal of propagation techniques is to reduce as much

as possible the domains for the variables without losing any

solution. The most known approach is based on the Waltz

filtering algorithm [21] which has initially been proposed to

reduce the combinatory associated with line labeling of three-

dimensional scenes. It has proved its effectiveness in solving

some control problems such as identification, filtering and

robust control [22].

A contractor associated to a set X is an operator C which

associates to a box [x] ∈ R
n another box C([x]) ∈ R

n such

that the two following properties are always satisfied [22]:

• C([x])⊂ [x] (contractance property)

• C([x])∩X = [x]∩X (completeness property)
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Damage estimation

In the sequel, we propose to use interval techniques for

estimating the parameters of system (21). Thus, the following

CSP is formulated:

C :

{

Ck : xk = f (xk−1,θ ,wk), yk = h(xk,uk), k = 0, . . . tp

θ ∈ [θ ,θ ]
(24)

In the following, an outer and inner approximations of the

solution set defined by (21) are characterized using the

algorithm contractor based on the Waltz filtering algorithm.

This methodology allows one to compute two sets Θint and

Θext of intervals satisfying:

Θint ⊆ Θ ⊆ Θext (25)

In the second step, the degradation prediction is computed

by the means of the natural inclusion function of the state

equation (6), where [θ ] is computed through a projection of

Θext on the axes θi. This inclusion function is given by

[xk] = [ f ]([xk−1], [θ ], [−W,W ]) (26)

where [−W,W ] is the feasible domain of the disturbances

w. A consistency check of the predicted intervals [xk] (k >
tp) and the degradation threshold is used to estimate the

remaining residual life as shown in Fig. 5. Due to uncertainty

propagation, it is not possible to compute a reliable point

estimation of the RUL. In the following, we propose to define

lower and upper bounds of the RUL (i.e. tRUL ∈ [tRUL, tRUL])
defined by:

{

tRUL = t p f − tp

tRUL = t p f − tp
(27)

Similarly to the stochastic case where the RUL is character-

ized by a probability density function, in the set-membership

context, the RUL can be considered as a random variable

with an uniform pdf within the bounds [tRUL, tRUL].

IV. NUMERICAL RESULTS

In this section, the three model-based prognosis methods

presented are applied to estimate the evolution of a nonlinear

fatigue crack growth process. The simulation results are

shown and compared using the performance metrics given

in Section II-C. With dN sufficiently small, the Paris model

(1) can be discretized to give:

ak = eCk (∆σ
√

πak−1)
mk dN + ak−1 (28)

Therefore, the augmented state vector to be estimated is:

xk = [ak,Ck,mk]
T (29)

In this model, log(C) is used because C has a very small

value. The true crack size data is generated using the values

given in Table I and measurements are obtained by adding

a uniform noise distributed in the interval [−0.002,0.002].
Concerning the stochastic methods, Table II gathers the

variance of the process noise, of the measurements noise,

and of the parameters m and C.

TABLE I

SIMULATION PARAMETERS

∆σ dN atrue log(Ctrue) mtrue

78 50 0.01 -22.33 3.5

TABLE II

PARAMETERS OF THE EKF AND PF ALGORITHMS

σ2
C σ2

m σ2
w σ2

v

10−2 10−3 10−8 10−10

The choice of these hyper-parameters has been done exper-

imentally after some simulations. It was noticed that when

decreasing σ2
v , the RUL calculated with the EKF and the

PF were overestimatd and when increasing it the predicted

RUL were underestimated. Moreover, the three algorithms

are very sensitive to the initial value of the parameter m as

it is an exponent.

The experiments are performed assuming that the true values

of the parameters are unknown, however their variation

ranges are known [23]. 24 measurements were generated

every 50 cycles, from cycle 0 to cycle 1200, which is the

prediction time tp. From this time instant, the estimation of

the degradation state in the future without new measurements

was realized until the threshold fixed at 0.0463 is reached

(according to [24]). In order to evaluate the performance

of the algorithms, 100 experiments have been simulated,

and the value of the performance metrics parameters are

[Rmin,Rmax] = R0 = 100. The simulation results are depicted

from Fig. 3 to Fig. 8.
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Fig. 3. Results of 100 experiments obtained with an EKF
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Fig. 4. Results of 100 experiments obtained with a PF
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Fig. 5. Results obtained with interval technique

Fig. 6. RUL pdf for the EKF and the PF
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Fig. 7. Estimation of the parameters m and C with the EKF
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Fig. 8. Estimation of the parameters m and C with the PF

TABLE III

PERFORMANCE EVALUATION RESULTS

Method Accuracy Precision Timeliness

EKF 0.8151 0.7501 1.8277

PF 0.9842 0.7283 0.0873

Intervals 0.9983 0.4790 0.6927

The simulations show that the EKF based method is less

performant than the PF in terms of accuracy and timeliness.

Indeed, because of the nonlinear dynamics, the different

pdfs involved in the nonlinear Bayesian filtering problem

are not Gaussian while the EKF algorithm assumes them as

Gaussian, which may lead to the divergence of the filter. The

lower performance of the EKF has already been reported in

[25]. However, it was not quantified precisely with metrics.

The deterministic method based on interval techniques gets

the best results concerning accuracy. However, its precision

is smaller than the particle filter. In terms of timeliness,

the last two algorithms are in the case where the predicted

RUL pdf is around the ground-truth RUL. Moreover, the PF

approach requires a more complex implementation and has

to propagate the entire state pdf at each step which tends to

increase the computational time compared to the two other

algorithms. This work also shows the interest of using the

metrics presented in Section II-C for evaluating prognosis

peformance.

V. CONCLUSIONS

Deterministic and stochastic model-based prognosis ap-

proaches with uncertainty propagation have been compared

using different performance metrics. Both kinds of methods

are able to generate a pdf or an interval that encapsulate

the different uncertainties associated to the RUL prediction.

It was shown that the PF method outperforms the EKF one.

Then it was observed that the accuracy of the interval method

is higher, but the PF approach results in a narrower RUL

pdf. However, the interval generated in the deterministic

method tends to shrink as more measurements are available.

Therefore one can conclude that the choice between the two

algorithms (namely PF or interval technique) can be driven

by user requirements and available resources considerations.

For example, if a low computation time is needed and if

the evolution of the degradation state is rather slow, the

deterministic method based on interval techniques can be

used as the precision improves over time. In the case where

prediction horizons are smaller, the PF approach should be

preferred.

In further works more realistic data will be used, and other

more complex degradation models will be considered, such

as a turbofan degradation model. Finally, the uncertainty

management can be highly enhanced with a sensitivity

analysis which consists in quantifying the influence of each

source of uncertainty to identify the most significant input

variables or model parameters. Moreover, a combination of

stochastic and deterministic methods is also a conceivable

solution to bridge the gap between the two algorithms and

to take advantage of possible complementarities.
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